Day 4

Algebra 1	Foundations Intermediate Algebra 2
Standards	A1.AREI.6* Solve systems of linear equations algebraically and graphically focusing on pairs of linear equations in two variables. A1.AREI.11* Solve an equation of the form $f(x)=g(x)$ graphically by identifying the x-coordinate(s) of the point(s) of intersection of the graphs of $y=f(x)$ and $y=g(x)$. (Limit to linear; quadratic; exponential)
Learning Targets/I Can Statements	I can determine the intersection point of two lines from a graph. I can understand that systems of equations have one, zero, or infinite solutions.
Essential Question(s)	How I determine the intersection point of two linear equations by graphing? How can I determine the number of solutions when given a system of equations?
Resources	https://www.khanacademy.org/math/algebra-basics/alg-basics-systems-of-equations http://crctlessons.com/systems-of-equations-game.html https://www.desmos.com/calculator
Learning Activities or Experiences	$1^{\text {st: }}$ Recall questions (attached) 2nd: Watch the Khan Academy video (link above) system of linear equation basics and number of solutions to systems of equations Alternative: Notes on systems on linear equations (Solutions and graphing) $3^{\text {rd }}$: System of linear equations game $4^{\text {th }}$: Assignment

Recall Questions

1. How many solutions are there for the following equation $3 x+8=6 x-3$?
2. How many solutions are there for the following equation $2(x+3)=5 X-3 X+3$?
3. How many solutions are there for the following equation $\frac{4 X-6}{2}=2 X-3$?
4. What is the solution: $-3 x+7 x+4=4 x-10$
5. What is the solution: $\frac{2 x-3}{4}=\frac{3 x+1}{3}$

Systems of Linear Equations

System of Linear Equations: is a collection of two or more equations.

Number of solutions

We will be looking at two ways to find the number of solutions to a system of linear equations.
$1^{\text {st }}$: We will be looking at graphs of systems of linear equations.
$2^{\text {nd }}$: We will be looking at linear equations:

One solution

There is one solution when the graphs intersect at a given point.

When equations are in slope intercept form, the linear equations will have different slopes.
$E x: y=2 x+3$ and $y=3 x-4$

No solution

There is no solution when the lines are parallel.

When equations are in slope intercept form, the linear equations will have the same slope but different y intercepts.
$E x: y=-3 x+2$ and $y=-3 x-3$

Infinite solution

When only one line appears on a graph, there is infinite solutions (many). The lines will overlap each other

When equations are in slope intercept form, the linear equations have the same slopes and the same y intercepts.
$E x: y=-5 x+4$ and $y=4-5 x$

Your Turn: Tell how many solutions to the system of linear equations.

1. $Y=-3 x+5 x$ and $3 x+y=10$
2. $Y=1 / 2 x+4$ and $x-2 y=-8$
3. $3 x-2 y=10$ and $y=2 / 3 x+12$
4.

5.

Solutions of linear equations by graphing

The intersections of linear equations is the solution.

The solution to the above system of linear equations is $(3,2)$.

System of Linear equations

Algebraically

The coordinate that satisfies both equations is the solution to the system of equations.

Ex: $3 x+3 y=9$ and $y=2 x-3 \quad(2,1)$

$$
\begin{array}{cc}
3(2)+3(1)=9 & (1)=2(2)-3 \\
6+3=9 & 1=4-3
\end{array}
$$

$$
\begin{array}{ccc}
\text { Ex: }-2 x+5 y=10 \quad \text { and } & 4 x+y=12 \quad(0,2) \\
-2(0)+5(2)=10 & 4(0)+2=12 \\
0+10=10 & 0+2=12
\end{array}
$$

This is not a solution because it didn't satisfy both equations?

Your turn:

1. Is $(-3,4)$ a solution to the system of equations?

$$
y-x=-7 \quad \text { and } 2 x-2 y=-14
$$

2. Is $(2,3)$ a solution to the system of equations?

$$
Y=x+1 \quad \text { and } \quad 2 y=3 x
$$

